

COURSE SYLLABUS

Academic year 2024-2025

1. Programme Information

1.1. Higher education institution	Lucian Blaga University of Sibiu
1.2. Faculty Faculty of Engineering	
1.3. Department	Department of Computer Science and Electrical and Electronics Engineering
1.4. Field of study	Computer Science and Information Technology
1.5. Level of study	Master
1.6. Programme of study/qualification	EMBEDDED SYSTEMS

2. Course Information

	ocurse information	_	Ι -								
2.1.	.1. Name of course		Microcontrollers in Automotive			Code	ES.207.R	U			
2.2. Course coordinator		Assist. Prof. Vlăduţ Horia CĂPRIŢĂ, PhD									
2.3.	Seminar/laboratory coordinator		eng	. Vlăd	uţ Ho	ria CĂPRIȚĂ	, PhD				
2.4.	Year of study	1		2.5.	Seme	ester	2	2.6.	Evaluation	n form	E
2.7.	Course type				U	2.8. The f	ormative cat	tegory	of the cou	ırse	R

3. Estimated Total Time

3.1. Course Ex	tension within the	Curriculum – Numbe	r of Hours per Wee	ek		
3.1.a. Lecture	3.1.b. Seminar	3.1.c. Laboratory	3.1.d. Project	3.1.e. Other		Total
1	-	1	-	0	2	
3.2. Course Ex	tension within the	Curriculum – Total Ni	umber of Hours wi	thin the Curricult	um	
3.2.a. Lecture	3.2.b. Seminar	3.2.c. Laboratory	3.2.d. Project	3.2.e. Other		Total
14	-	14	-	0	28	
Time Distribution	on for Individual	Study				Hours
Learning by using course materials, references and personal notes					20	
Additional learning by using library facilities, electronic databases and on-site information					6	
Preparing semin	ars / laboratories,	homework, portfolios	and essays			14
Tutorial activities					3	
Exams				4		
3.3. Total Indiv	idual Study Hour	s (NOSI _{sem})		47		
3.4. Total Hours in the Curriculum (NOADsem) 28						
3.5. Total Hour	3.5. Total Hours per Semester (NOAD _{sem} + NOSI _{sem}) 75					

3.6. No. of Hours / ECTS

3.7. Number of credits

Tel.: +40 269 21.79.28 Fax: +40 269 21.27.16

25

3

4 Prerequisites (if	(hahaan

4.1. Courses that must be successfully completed first (from the curriculum)	Embedded Computing Embedded Systems Architecture
4.2. Competencies	C/C++/Assembly Programming skills

5. Conditions (where applicable)

5.1. For course/lectures	Scientific papers, video-projector, blackboard
5.2. For practical activities	Lab room with computers having installed the necessary software MCU 161/167 development kits Oscilloscopes
(lab/sem/pr/app)	Power sources Peripherics (sensors and actuators)

6. Specific competencies acquired

		Number of credits assigned to the discipline	3	Credits distribution by competencies
	PC1	approve engineering design		0.5
	PC2	perform project management		0.5
6.1. Professional	PC11	design prototypes		0.5
competencies				
6.2.	TC1	apply knowledge of science, technology and engineer	ing	0.5
Transversal	TC2	show initiative		0.5
competencies	TC3	assume responsibility		0.5

7. Course objectives (resulted from developed competencies) 0.5

7.1. Main course objective	Introduction and evaluation of architectural paradigms and developments in the field of dedicated systems used in automotive. The specific architecture characteristics of microcontrollers used in automotive (Siemens C161-C16 as well as the programming techniques of these microcontrollers are presented.	
7.2. Specific course objectives	 Understanding paradigms and architectural developments in the field of dedicated computing systems used in automotive. Knowledge of dedicated application design techniques. Developing the ability to apply effective methodologies for performance evaluation and architectural optimization of dedicated systems used in the automotive field. 	

8. Content

9. 8.1 Lec	tures	Teaching methods	Hours
Lecture 1	General Architecture of Microcontrollers (Introduction) Architectural features of C161/C167 microcontrollers	Exposition, Discussion	2
Lecture 2	C161 Central Processing Unit Memory organization within the C161 architecture	Exposition, Discussion	2
Lecture 3	The System of Interruptions and Exceptions related to the C161 microcontroller	Exposition, Discussion	2
Lecture 4	Interrupt Management in Microcontroller Based Applications/Systems	Exposition, Discussion	2

4, Emil Cioran Street 550025, Sibiu, România inginerie.ulbsibiu.ro Tel.: +40 269 21.79.28 Fax: +40 269 21.27.16 E-mail: inginerie@ulbsibiu.ro

Ministry of Education Lucan Blaga University of Sibiu Faculty of Engineering

	Total led	cture hours:	14
Lecture 7	Programming techniques for systems based on microcontrollers Systems with real-time operation.	Exposition, Discussion	2
Lecture 6	General Purpose Timers and the Watchdog Timer (WDT) Use of general-purpose timers and WDT timer in dedicated applications	Exposition, Discussion	2
Lecture 5	Parallel Ports Using parallel ports in dedicated applications	Exposition, Discussion	2

8.2.b. Laborato	3.2.b. Laboratory		
Laboratory 1	Software environments for dedicated applications: Dave, Tasking, Flashtools (MCU C161 - C167)	Development, Experiment	2
Laboratory 2	Programming parallel ports	Development, Experiment	2
Laboratory 3	Programming and using timers	Development, Experiment	2
Laboratory 4	Programming the asynchronous serial interface	Development, Experiment	2
Laboratory 5	Synchronous serial interface programming	Development, Experiment	2
Laboratory 6	Handling external interrupts	Development, Experiment	2
Laboratory 7	Watch-dog timer programming	Development, Experiment	2
	Total laboration	oratory hours:	14

10. Bibliography

	C167 Derivatives 16-Bit CMOS Single-Chip Mcrocontrollers. User's Manual.			
10.1.Recommended	Published by Siemens AG 1996.			
Bibliography T. Noergaard, Embedded Systems Architecture. A Comprehensive Guid				
	Engineers and Programmers, Elsevier, 2005.			
10.2.Additional R. Zurawski, Embedded Systems Handbook, Taylor&Francis Group,				
10.2. Additional I A Fisher D Farabaschi C Voung Embedded Computing Floryier C				
Bibliography J. Ganssle, Embedded Systems. World Class Designs, Newnes.				

11. Conjunction of the discipline's content with the expectations of the epistemic community, professional associations and significant employers of the specific study program

Curricula are continuously updated based on the most prestigious international text-books and also based on the most relevant progresses in this field (research projects and scientific papers).

12. Evaluation

Activity Type	11.1 Evaluation Criteria	11.2 Evaluation Methods		11.3 Percentage in the Final Grade	Obs.
11.4a Exam / Colloquy	Theoretical knowledge acquired	Preparing a research topic	50%	60%	CPE
		Final evaluation	50%		
11.4c Laboratory	Practical knowledge acquired	Experimental works		40%	CPE
	performance standard: 50%	result after adding up the	e weighted	Iscores	

The Course Syllabus will encompass components adapted to persons with special educational needs (SEN – people with disabilities and people with high potential), depending on their type and degree, at the level of all curricular elements (skills, objectives, contents, teaching methods, alternative

4, Emil Cioran Street 550025, Sibiu, România inginerie.ulbsibiu.ro

Tel.: +40 269 21.79.28 Fax: +40 269 21.27.16

E-mail: inginerie@ulbsibiu.ro

Ministry of Education Lucan Blaga University of Sibiu

Faculty of Engineering

assessment), in order to ensure fair opportunities in the academic training of all students, paying close attention to individual learning needs.

Filling Date:

11.09.2024

Department Acceptance Date:

16.09.2024

	Academic Rank, Title, First Name, Last Name	Signature	
Course Teacher	Assist. Prof. Vlăduţ Horia CĂPRIŢĂ, PhD	Capu	
Study Program Coordinator	Prof. Arpad GELLERT, PhD	hyst	
Head of Department	Assoc. Prof. Radu George CREŢULESCU, PhD	de	
Dean	Prof. Maria VINȚAN, PhD	J.A.	