SUBJECT

Name discipline:		CONTROL SYSTEMS			
Discipline Code:	EMBEDDED SYSTEMS				
Study program:		ADVANCED STUDIES MASTER			
Department:		Calculatoare si Automatizari			
Faculty:		Inginerie ''Hermann Oberth''			
University:	''Lucian Blaga'' din Sibiu				
Year of study:	1	Semester	1	The type of final assessment	E1
Conditions of discipline (DO=opțională/DF=liber a	gatorie/	DO	Number of credits:	10	
Category formative discipline (DF=fundamentală.; DI=inginerești; DS=specialitate; DC=complementară)			ginerești;	DF	
Total hours of curriculum		28		Total hours per semester:	28
The holder of the			Conf.dr.ing. Cornel R	entea	

Total hours (per semester) in the curricula						
Total hours / semester	С	S	L	Р	Total	
	2	0	2	0	28(C)+28(L)=56	

Objectives of the course	The courses, in a I-semester presents the theoretical aspects and basic principles of Control Systems, underlying the analysis and synthesis using input- output or input- state-output formalism automatic control systems. For modern Control theory, matrix algebra is also required. The courses encourages thinking, as the control systems of tomorrow will have to be creative. The programs Matlab are easy to use and follow the text material.
Specific powers discipline	 <u>1. Knowledge and understanding:</u> systemic terms and concepts including the relevant principles of Control Systems theory. awareness of the notion of multivariable automatic (automated systems exist in different areas, etc.). understanding the purpose of a systemic concept (by analytical calculation). exhaustive knowledge of a system of automatic adjustment (direct example case study).

	 2. Explanation and interpretation: (explanation and interpretation of systemic concepts, automated multivariable system design, explaining the transfer matrix formalism): explain the basic concepts of Control theory. explain the systemic knowledge. explaining and interpreting the structural approach. explanation and interpretation of modeling the Control. explanation and interpretation of dynamic simulation. explanation and interpretation of multivariable Control programming.
Specific powers discipline	 3. Instrumental - Application: (design, management and evaluation of specific practical activities) use computer-aided theoretical methods modeling and simulation of automated systems (modeling and simulation languages). use case study experimental platforms (automated systems).
	 <u>4. Attitude:</u> Understands and appreciates the coincidence between theory and practice, because the systemic approach. Adaptability and flexibility in addressing systemic. Knowledge of the depths, saves time. intrinsic motivation for creating the systemic approach and attitude of self-claim (systemic trust). The self-concept that allows student awareness "phenomenon" category corresponding to the essence of dialectics, Develop a critical appreciation of the natural and formalities of systems theory, including simultaneity "cause and effect". Desire to use calculations to solve systemic problems "simple", in multivariate formalism. Technical Approach successive system checks to general belief.

	TOPICS COURSES				
	Nr.	Denumirea temei	Nr. ore		
	curs				
	C1.	The Concept of Control Systems	2		
	C2.	Introduction to Continuous Control Systems forms	2		
	C3.	Laplace Transforms	2		
Course contents	C4.	Closed Loop System	2		
	C5.	Transfer Function	2		
	C6.	System abstract. Linear mathematical model input- output type (MM-II). Input-Output Relationships.	2		
	C7.	Connections and Block Representation of Control	2		
		Systems			
	C8.	Programming Structure of MIMO Systems	4		

	C9.	Multivariable systems-M.I.M.O. Functional	4
		characterization. Topological systems using State-	
Lab.		Variable Analysis	
contents	C10.	P.I.D. Control Systems	2
	C11.	Stability	2
	C12.	Design and Analysis of Control Systems	2
		TOPICS LABORATORIES	
	L1.	Symbolic representation of system	2
	L2.	Representation of a multivariable system, LTI models	4
	L3.	Pole-placement design.	2
	L4.	Relationship between system representations.	4
	L5.	Control system with state variable feed-back.	4
	L6.	Complex control system	4
	L7.	Symbolic representation of system	2
	L8.	Representation of a multivariable system, LTI models	4
	L9.	Pole-placement design.	2
			28

Teaching methods	 Main function of teaching methods: exposure, media exposure, demonstration of computer assisted, automated testing systems practice in parallel with their modeling and simulation. Methods occurring mainly directed discovery: conversation heuristic, case study, verification confidence obtained. Algorithmic methods based on operational sequences, stable, pre-built.
------------------	---

Setting note Final (percentages)	- Answers to exam / (final evaluation)	50%
	- Tests during the semester	10%
	- Final answers to practical laboratory work	10%
	- Activities gender issues / papers / essays / projects etc.	5%
	- Control issues	25%
	- TOTAL	100%

The final evaluation will include examining TYPE ORAL simultaneous group (in a unit time frame) on parallel topics individually customized without repeatability issues.

Minimum requirements for grade 5	Requirements for grade 10
Making the final note the percentage of content,	
excluding the test during the semester.	Making content percentages of final grade.
Final classification percentage for grade 5	Self-Learning and its realization in each
includes equivalent achievements during	laboratory session on case studies of type
laboratory listed proportionally.	design to the theme.

TOTAL hours self study (per semester) = 2 themes home / 20h 10 research topics curs/20h = 40h

	1 C. Rentea	Minimum: - <i>Teoria Sistemelor</i> , Editura Univ. ''Lucian Blaga'', Sibiu, 2002.
	2 C. Rentea	Teoria Sistemelor, Editura Univ. ''Lucian Blaga'',
		- Sibiu, 2002. <i>MATLAB (îndrumar laborator-2vol)</i> , 2002.
	3 Victor	Control Systems, Prentice Hall, 1999
	J.Bucek	
	4 D. Arnold,	Additional: - Ordinary Differential Equations using MATLAB,
Bibliography	J. C. Polking	MathWorks (on line), 2008.
	5 Matlab-	- The MathWorks-Control System Toolbox (6)
	Technical	
	Computing	
	6 IEEE	- Transaction on Automatic Control (2000-2009)
List of materials Computer system	s used in teaching: m-Matlab-Simulink pla	atform, an experimental platform for SRA, XY recorder in
rear time.		

Coordinator	Academic degree, title, name:	Signature
Discipline	Conf.dr.ing.Cornel Rentea	